小数近似数的教案(精选六篇)
时间:2025-06-05 作文辅导网教学设计是根据教学对象和教学目标,确定合适的教学起点与终点,将教学诸要素有序、优化地安排,形成教学方案的过程。今天小编为大家带来的是《求一个小数的近似数》教学设计,更多教学设计尽在我们应届毕业生考试网。
小数近似数的教案 篇1
一、教学内容:小数的意义P32——P33
二、教学目标:
1、理解小数的意义,知道一位小数、两位小数、三位小数……分别表示十分之几、百分之几、千分之几……
2、知道每个数位上的计数单位和相邻两个计数单位间的进率是十,初步认识一个小数的小数部分各数位上有几个这样的单位。
3、通过了解小数的产生和发展过程,提高数学学习的兴趣,增强热爱数学的情感。
三、教学重难点
重点:理解小数的意义。
难点:会用小数表示计量单位换算的结果。
四、教学准备
多媒体、米尺。
五、教学过程
(一)导入新授
师:生活中你在哪些地方见到过小数?你能说说吗?(出示)学生回答。
师:生活中这么多的地方用到小数,说明小数的应用十分广泛,无处不在。 请同学们把各自测量周围物体的长、宽(或高)的数据说一说。(教师将各个数据分别按“整米数”和“非整米数”两类板书)
师:这些不够整米数的部分,如果仍然要用“米”作单位写出来,除了用分数表示外,还可以用怎样的数表示出来呢?请同学们阅读教材第32页的内容。
师生共同归纳:在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。但是,小数的意义又是什么呢?这节课,我们继续深入学习小数的知识。
板书:小数的意义。
(二)探索发现
1、认识一位小数。
(1)出示教材第32页例1米尺图。
把1平均分成10份,每份长多少分米?1分米是1米的几分之几?
教师介绍出示:“十分之一”米还可以写成0.1米。
那2分米、3分米呢? 学生试着完成填空。
学生在小组内交流后再全班交流,交流时说说每个分数表示的意义
教师根据学生的回答板书:
1分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.1米,3分米= 新人教版数学四年下第四单元小数的意义和性质教案(一) 米=0.3米 ……
(2)观察上面的等式你能发现分数和小数之间的联系吗?
学生观察并在小组内讨论。
师生交流后小结:分母是10的分数,可以写成一位小数。一位小数表示十分之几。
2、认识两位、三位小数。
我们知道了一位小数表示的是十分之几的数,那么两位、三位小数应该表示什么呢?下面请同学们以这些两位小数为材料,继续研究。
(1)教师继续出示米尺的.放大图。
学生思考、小组交流后进行反馈:
把1米平均分成100份,这样的一份或者是几份表示百分之几米,可以用像0. 04、0.01这种两位小数来表示。
1米有1000毫米,就是把1米平均分成1000份,1毫米就是新人教版数学四年下第四单元小数的意义和性质教案(一) 米,用小数表示就是0.001米。
(2)小结。
分母是100的分数,可以写成两位小数。两位小数表示百分之几。
分母是1000的分数,可以写成三位小数。三位小数表示千分之几。
3、小数的意义。
分母是10、100、1000……这样的分数可以用小数表示,这些小数的计数单位分别是多少?每相邻的两个计数单位之间的进率是多少?
学生交流说说对小数的理解。
师生共同归纳得出结论:一位小数表示十分之几,十分之几的计数单位是十分之一,那么一位小数的计数单位就是0.1。同理两位小数、三位小数的计数单位就是0. 01、0.001。每相邻两个计数单位间的进率是10。
4、阅读“你知道吗?”。
师:同学们已经知道小数是怎么产生的及小数的意义,那你们知道小数的历史吗?
学生自学教材第33页“你知道吗?”。
师生交流时,让学生说说小数的发展史。
(三)巩固发散
1、指导学生完成教材第33页“做一做”。
让学生独立填写,集体订正时,让学生说说是如何用分数和小数来表示的。
2、在括号内填上合适的小数。
新人教版数学四年下第四单元小数的意义和性质教案(一)
( )元 ( )千克 ( )厘米
(四)评价反馈
通过今天这节课的学习,你有哪些收获?
师生交流后总结:认识了小数,知道了小数就是用来表示十分之几、百分之几、千分之几……的数。还认识了小数的计数单位,知道了相邻的计数单位之间的进率是10。
(五)板书设计
小数的意义
分母是10、100、1000……的分数可以用小数表示。
小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1、0.01、0.001……
每相邻两个计数单位间的进率是10。
六、教学后记
小数近似数的教案 篇2
【教学目标】
1、使学生会用“四舍五入”法保留一定的小数位数,求出小数的近似数,将不是整万或整亿的数改写成用“万”或“亿”单位的数。
2、通过学生自主探索、合作交流,培养学生的探索能力。
【教学重点】
使学生掌握求一个小数的近似数的方法。
【教学难点】
使学生准确、熟练地应用“四舍五入”法求一个小数的近似数。
【教具】
多媒体课件
【教学过程】:
一、课前预习
1、怎样用“四舍五入”法求出一位小数的近似数?
2、怎样将不是整万或整亿的数改写成用“万”或“亿”作单位的数?
二、展示交流
(一)创设情境,引入新知
课件出示豆豆,看看小豆豆的身高是多少呢?
今天下午我们就来研究求一个小数的近似数。
(二)求小数的近似数的方法
1、同学们还刻求整数的近似数的方法吗?我们可不可以用“四舍五入”法来求小数的近似数呢?
2、探究新知
(1)同桌讨论回忆什么是“四舍五入”法?
(2)讨论尝试
①那么求一个小数的近似数,我们也可以根据需要用“四舍五入”法省略十分位、百分位、千分位后面的数。
②出示例1,讨论求0.984的近似数
③保留一位小数时,末尾的“0”为什么应该写呢?
(3)总结归纳。求一个数的近似数,保留不同的位数,求得的近似数不同。保留小数位数越多,这个近似数就越接近准确数,也就是更精确。
(三)将不是整万或整亿数改写成用“万”或“亿”作单位的数
1、出示教材第74页例2
①讨论:通过课件图片中的数学信息,我们怎样表示这些数的读写会比较方便呢?
②结论:改写成用“亿”或“万”作单位的数。
2、从算理入手,理解改写方法。
①讨论:怎样改写呢?
②结论:改写时在万位后面点上小数点,写上“万”字,并去掉小数末尾的0就可以了。改写成以“亿”作单位同上。
三、检测反馈
1、教材第74页上、下的“做一做”。
2、教材第75页练习十二第一、2题。第3、4题
四、板书设计教
求一个数的近似数
四舍五入
法
保留两位小数0.984≈0.98 142800千米=14.28万千米
保留一位小数0.984≈1.0 778330000千米=7.7833亿千米
≈7.8亿千米
保留整数0.984≈1
注意:在表示近似数时,小数末尾的0不能去掉
教学反思:
现代课堂理念提倡师生互动、生生互动、学生思维的灵动、学生智慧的'碰撞,而在自己的课堂中就缺失了这些,那么导致课堂氛围是平淡无味的,学生心底潜在的积极热情没有调动起来,虽然学生也在发言、讨论、交流,但是每个孩子的情感体验不是真正愉悦的。造成这样课堂效果的原因还是因为自己对于整个课堂的把控不够巧妙,刻意的在完成自己设计好的教学,没有和孩子们融合。
小数近似数的教案 篇3
教学目的:
●使学生能够根据要求会用:“四舍五入”法保留一定的小数位数,求出一个小数的近似数。
●培养学生的类推能力,增进学生对数学的理解和应用数学的信心。
教学重点:
能正确的求一个小数的近似数。
教学难点:
怎样准确的求一个小数的近似数。
教学过程:
一、导入新课
师:我们已经认识了小数,生活中有许多小数的信息,你收集到了吗?
生:汇报,教师按准确数和近似数把学生提供的信息中的小数分成两种写在黑板上。
师:谁注意到了老师为什么把同学提供的这些小数分成两种写在黑板上呢?(生通过观察回答)
师:在实际生活中有时不必说出小数的准确数,只要说出它的近似数就可以了,同学们看一看自己收集到的信息中有这样的情况吗?(生汇报和小数近似数有关的信息。)
师:听了同学们的汇报,你有什么感受呢?小数的近似数在生活中应用的这么广泛,怎么求一个小数的近似数呢?今天我们就来一起学习。师板书课题。
1、把下面各数省略万后面的尾数,求出它们的近似数(卡片出示)
986534 58741 31200
50047 398010 1487016fd.CoM
2、下面的□里可以填上哪些数字?
32□645≈32万 47□05≈47万
学生填完后,说一说是怎么想的。
[以上复习内容重点抓住了整数取近似值的方法让学生回忆练习,通过复习唤起学生印象,为求小数的近似值打下基础]
二、探究新知
我们学过求一个整数的近似数。在实际应用小数时,往往也没有必要说出它的准确数,只要它的近似数就可以了。如:如豆豆的身高0.984米,平常不需要说得那么精确,那么如何求一个小数的近似数呢?今天我们就来学习这一内容。
师:豆豆的身高0.984米,我们一般怎么表述豆豆的身高?
你是怎样得出豆豆身高的进似数的?
师:你们能利用已有的知识来求出这个小数在不同情况下的近似数吗?
生:自己练习在练习本上做一做,然后在小组内进行交流,看一看有没有争议的地方。并引导学生按顺序进行汇报。
生:
(1)学生汇报保留两位小数求近似数的思维过程,并再找一名同学进行汇报,加深对方法的理解。
(2)保留一位小数,有争议吗?找同学汇报自己的想法。学生讨论近似数是1.0还是1。教师出示线段图,看一看给学生带来什么启示。
引导学生小组讨论交流:使学生明确保留一位小数是1.0,原来的长度在0.95与1.04之间。保留整数为1,原来的准确长度在1.4与1.0之间,所以1.0比1精确的程度高一些。也就是小数保留的位数越多,精确的程度越高。
师:总结出尽管两个数的大小相等,但表示的精确程度不同,同学们认为哪个答案是正确的呢?求近似数时,小数末尾的零不能去掉。
(3)保留整数部分应怎样思考,注意什么问题呢?
师:请同学们回忆求0.984近似数的过程,你能发现求一个小数的近似数有什么共同的特点吗?同学们利用我们以前学过的知识也就是求整数近似数的方法,四舍五入的方法来求小数的近似数,希望同学在今后的学习中也能运用我们学过的.知识来解决新的问题。下面我们就用这种方法来求课前同学们提供的这些小数的近似数。(保留到十分位)
(4)小结:
问:求一个小数的近似数应注意什么?
引导学生讨论知道:求一个小数的近似数要注意两点:
①要根据题目的要求取近似值,如果保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入。
②取近似值时,在保留的小数位里,小数末一位或几位是0的0应当保留,不能丢掉。
三、练习
(1)师:最后一个信息谁提供的,你能把这个信息用小数近似数的形式)表示出来吗?学生自己修改自己手中的信息,汇报后,再同桌之间交流。
(2)师:老师也收集到了一些小数的信息,这些信息能用小数近似数的形式表述吗?能请你表示出来,不能,请说明理由)
(3)师:同学们还记得自己的身高大约是多少吗?想知道老师的身高吗?教师提示:身高大约是1.6米,老师的实际身高是两位小数,猜一猜老师的实际身高是多少米?老师的身高是用四舍法得到的,再来猜一猜。
(4)出示食物的价格,判断小明带12元钱够吗?学生自由发言,说明自己的理由。
(5)出示租车说明,判断租多少辆车去出游?
师:看来我们不仅要掌握求近似数的方法,还要灵活的运用所学的知识才能解决生活中的实际问题。
四、全课小结:教师明确小数的近似数的方法与整数的近似数相似。要用“四舍五入”法保留小数位数。要注意保留小数位数越多,精确程度越高。
小数近似数的教案 篇4
教学内容:
北师大版教材第八册 小数的意义
教学目标:
1.使学生了解小数的产生,理解小数的意义。
2、培养学生收集信息、动手操作能力和抽象概括能力。
3、渗透事物之间普遍联系的观点、实践第一的观点。
4、加强对学生学习方法的指导。
教学重点、难点:
理解和抽象小数的意义。
教学理念:
1、以学生的自主学习为活动前提,营造自我探索、自我发现的学习环境。让学生用个性化的理解方式表达对小数的理解。
2、尊重每一位学生的学习成果,建立平等、民主、愉悦的学习氛围。
教材及学情分析:
小数的认识是在三年级下册“元、角、分与小数”及“分数的初步认识”的基础上进行的。“小数的意义”是通过实际操作,借助几何模型使学生体会到小数与分数之间的关系。小数是十进分数的另一种书写形式,要使学生理解小数的意义,必须通过实际操作。把一个正方形看作“1”,把“1”平均分成10份,1份是它的十分之一,就是0.1;把“1”平均分成100份,1份就是它的一百分之一,也就是0.01。从而使学生体会到分母是10、100、1000等的分数可以用小数表示。在练习中通过在直线图上表示十进分数和小数的问题,进一步沟通小数和分数之间的关系。
教师的教就是为了不教,作为学生学习活动的参与者、合作者、引导者,只有让学生拥有好的学习方法才会有真正意义上的`有效学习。这也是学生一直迫切需要掌握的。那么这节课在学习新知识的同时另外一个重点就是对学生进行学习方法的指导。
教具准备:
课件
一、导入。
在我们以前的学习当中,重点研究了整数。但是由于在日常生活中我们进行测量、计算等活动的时候往往经常得不到整数的结果,所以我们又进一步学习了分数。其实在用分数表示的基础上我们还可以用小数表示。这个学期我们将重点学习小数。
二、介绍方法:
怎样学好小数呢?要想学好它,就要讲究一定的学习方法,制定一个计划,按一定的步骤学习,就能收到事半功倍的效果了。今天老师就向大家介绍一种学习方法。(出示学习步骤)
学习步骤:关于小数:
1、我已经知道了什么?
2、我还想知道什么?
3、通过学习我又知道了什么?
4、动动手,检测一下。接下来我们就按照这样的步骤开展学习。
三、思考、讨论:
1、我已经知道了什么?
小数点、小数在生活中的广泛运用……
师:看来大家对小数的了解很有限,那么更有必要认真的学习小数了。
2、还想知道什么?
小数的起源、发展、计算、数位顺序、读写法、意义……
师:要想了解小数的这些知识,首先最基本的就是要了解小数的意义。那么这节课我们就来了解小数的意义吧。
四、引导学生自主学习小数的意义。
1.小数的意义,自学小数的意义(看书第3页)
(1)出示课件,把这个正方形平均分为10份取其中1份,用分数表示是十分之一,用小数表示是0.1;取其中3份就是十分之三,用小数表示是0.3。
把这个正方形平均分为100份取其中1份,用分数表示是百分之一,用小数表示是0.01。
(2)以1米为例结合具体的数量理解小数
把一米长的线段平均分为10份取其中1份,用分数表示是十分之一米,用小数表示是0.1米;把这条线段平均分为100份取其中1份,用分数表示是百分之一米,用小数表示是0.01米。
2、同桌之间互相交流,用数学语言说一说自己的涂色部分用分数和小数表示,分别是怎样的。
4、师:像0.1、0.5、0.7这样的小数是一位小数。像0.01、0.19、0.08这样的小数是二位小数。
5、想一想:1/1000、1/10000用小数怎样表示?23/1000、127/1000呢?它们分别是几位小数?观察黑板上的数据,想一想: 什么样的分数可以写成小数呢?
6、看书P3,找一找你认为最重要的那句话,读一读。分母是10、100、1000……的分数可以用小数表示。
7、看学习步骤3:通过学习我又知道了什么?集体交流
8、质疑(学生提问)
五、学习步骤4:检测。
1、在直线上标出相应的小数、分数。见P5、1
2、分数小数的转化P5 2、3
3、同伴相互出题。
小数近似数的教案 篇5
一、教学目的:
1、在学生初步认识分数和小数的基础上,使学生进一步理解小数的意义,认识小数的计数单位及相邻两个单位间的进率。
2、在操作中使学生体会小数产生的必要性。通过观察、比较,以及自主探究建立小数与分数之间的联系。
3、在学生积极参与数学活动的过程中,渗透数形结合的数学思想,培养学生的抽象概括和迁移能力。
二、教学重难点:
1、理解小数的意义,理解小数的计数单位及它们间的进率。
2、理解小数的计数单位及它们间的进率。
三、教学准备:
米尺、表格纸、多媒体课件等。
四、教学过程
(一)创设情境,直入新课
教师:1.同学们在前面的学习过程中已经学习了长度单位,还会用工具测量物体的长度,估一估,课桌面的长度能有多少?
2.大家估计得对不对呢?让我们一起用直尺来验证一下。
学生:实际测量。
教师:谁愿意把你测量的结果告诉大家?
学生:汇报预设,学生1:我测量课桌面的长度是120厘米。学生2:我测量课桌面的长度是1米2分米。……
教师:课桌的长度如果以米为单位就是1.2米。(1)在生活中,人们进行测量和计算时,往往不能正好得到整数的结果。这时常用小数表示。(2)认识小数吗?在哪儿见过小数?(3)出示课件超市的商品价格,书店的书本价格。今天我们一起学习小数的意义。
(设计意图:联系生活实际提出问题,让学生动手操作,在进行测量和记录的过程中发现有时得不到整数结果,从而引发认知冲突,激发学生进一步探究的欲望,感受小数产生的必然性。)
(二)实践入手,探究意义
1.认识一位小数。
教师:各小组观察米尺,把1米平均分成10份,每份是多长?
学生:1分米。
教师:把1分米改写成用“米”做单位的分数怎么表示?说一说你是怎么想的?
学生:交流想法。十分之一米
教师引导学生回答:1分米,也就是十分之一米,用小数表示就是0.1米。
教师:3分米,7分米改写成用“米”作单位的分数应该怎样表示呢?小数呢?请同学们试着写一写。学生独立完成,教师巡视。交流分享学生的思考过程。
教师:出示课件:
1、线段平均分成10份,取3份,用小数表示。
2、正方形平均分成10份取8份,用小数表示。
3、分母是10的分数对应的小数。仔细观察白板,你发现了什么?
学生:回答。
教师小结:像这样,小数点的右面有1个数字,这样的小数,就称为一位小数。也就是说,分母是10的分数,可以用一位小数表示。
2.认识两位小数。
教师:我们都已经知道了一位小数表示十分之几,猜一猜:两位小数可能与什么样的分数有关?1厘米写成用“米”作单位的分数应该怎么表示?小数呢?4厘米呢?8厘米呢?
学生:先独立完成,再合作交流。
教师:观察每组中的分数和小数,说一说你发现了什么?
学生:分数的分母都是100。学生:小数点的右面都有2个数字。教师小结:同学们观察得都非常正确。类似刚刚学习的一位小数,像这样,小数点的右面有2个数字的小数就称为两位小数。也就是说,分母是100的分数,可以用两位小数表示。
教师:出示课件:1、把正方形平均分成100份取35份,用分数和小数表示。
设计意图:引导学生根据一位小数表示十分之几,推测出两位小数和什么样的小数有关,有意识地促进迁移,体验成功乐趣,培养学生的学习兴趣和信心。
3.小数的意义。
教师:结合我们刚才对一位小数和两位小数的认识,自选两位以上的小数进行研究,完成表格。
学生:先独立研究,再汇报交流结果,教师根据学生回答适时板书。教师:通过你的研究,你发现了什么?
学生:我发现分母是1000的分数可以写成三位小数。比如:把1米平均分成1000份,这样的一份就是1毫米,也就是千分之一米,写成小数就是0.001米。
学生:三位小数就表示千分之几。
教师:其他同学还有谁也研究了三位小数的意义?谁愿意也来说一说?学生:我选择的小数是0.023,也是一个三位小数,可用分数表示为千分之二十三。
教师:说得非常好!一位小数表示十分之几,两位小数表示百分之几,三位小数就表示千分之几。那么四位小数表示什么?五位小数呢?学生:四位小数表示万分之几,五位小数表示十万分之几。结合板书,请同学们仔细观察、回忆一下我们刚才的探讨过程,和同伴交流一下,你都发现了什么?
学生:我认为分母是10、100、1000、10000等的分数可以用小数来表示。
学生:我知道了十分之几可以写成一位小数,百分之几可以写成两位小数,千分之几可以写成三位小数……学生3:也就是说,一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
教师小结:分母是10、100、1000……这样的分数可以用小数表示。一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……
4.认识小数的计数单位。
教师:大家都知道分数中,十分之几的.计数单位是十分之一,百分之几的计数单位是百分之一,千分之几的计数单位是千分之一。请同学们想一想小数的计数单位分别是多少呢?学生:交流。
教师:根据学生汇报归纳整理:小数的计数单位是十分之一、百分之一、千分之一……分别写作0.1,0.01,0.001……
5、小数相邻计数单位之间的进率
教师:引导学生1分米=0.1米。1厘米=0.01米。1分米=10厘米,那么0.1米=(10个)0.01米,0.1=(10个)0.01.……得出:每相邻的两个计数单位之间的进率是十。
(设计意图:引导学生从“一位小数表示十分之几”“两位小数表示百分之几”的直观认识,按循序渐进的认知规律,先讲解,接着放手让学生独立探究三位小数、四位小数、五位小数……表示的意义,最后抽象概括出小数的意义,总结小数相邻计数单位之间的进率是十。锻炼了学生的能力,破解了重难点。)
(三)巩固应用,强化认知
1.第33页做一做。
2.第36页练习九第1题。
3.课件:填空:0.7里面有7个( );再增加( )个0.1就等于1.0.23里面有( )个0.01.34个0.001是( );34个0.01是( );34个0.1是( )。
4.在括号里填上适当的小数。学生先独立完成,教师再让学生汇报答案,集体评议。
(设计意图:用不同层次的练习,让学生在对比练习的中加深对小数意义的理解,同时有意识地结合生活实际体现知识的应用,帮助学生根据小数意义理解生活中常见的小数所表示的含义。)
(四)总结巩固,拓展延伸
教师:今天这节课我们学习了哪些知识?你有什么收获?
教师:出示课件,介绍对小数发展具有杰出贡献的两位数学家——刘徽,朱世杰。
(设计意图:通过问题帮助学生梳理本节所学的知识,最后通过课外延伸向学生介绍与小数发展相关的数学资料,让学生进一步感受数学文化,培养学生的数学素养。)
小数近似数的教案 篇6
教学目标:
1.结合具体的生活情境,使学生体会到生活中存在着大量的小数。
2.通过直观模型和实际操作,体会十进制分数与小数的关系,并能进行互化。
3.通过练习,使学生进一步体会数学与生活的密切联系,提高学习数学的兴趣。
教学重点:
体会十进制分数与小数的关系,初步理解小数的意义。
教学难点:
能够正确进行十进制分数与小数的互化。
教学教具:
课件、米尺、正方形纸。
教学过程:
1.课件播放进入超市购物的情景。
铅笔:0.1元/个
圆珠笔:1.11元/个
西红柿:4.5元/千克
红豆:5.7元/千克
教师:上面这些物品的价钱有什么特点?
学生1:都不是整元数。
学生2:都是小数。
教师:还记得小数的读法吗?谁能读出上面的小数?读小数的时候要注意什么呢?
学生1:0.1读作零点一。
学生2:1.11读作一点一一。
学生3:4.5读作四点五。
学生4:5.7读作五点七。
学生5:小数点前面的部分按照整数的读法来读,小数点后面的部分要依次读出每一个数。
【设计意图:这样的设计,旨在把枯燥的数学知识与学生的`生活实际相联系,引起学生的学习兴趣,点燃他们求知欲望的火花,从而进入最佳的学习状态,为主动探究新知识聚集动力】
2.教师:上面的物品,你喜欢哪个,又该怎样付钱呢?
学生1:喜欢铅笔, 0.1元是1角。
学生2:喜欢圆珠笔,1.11元是1元1角1分。
学生3:喜欢西红柿,4.5元是4元5角。
学生4:喜欢红豆, 5.7元是5元7角。
3.教师:1.11元为什么是1元1角1分呢?以小组形式讨论,把你的想法先在小组内分享。
4.多种方法尝试解决。
(小组活动:学生有的是用元、角、分知识解决,有的是用小数的组成解决,有的完毕,汇报小组结果)
教师:你们知道原因了吗?哪个小组的同学把你们的方法和全班同学交流一下。
-
我们精彩推荐小数近似数的教案专题,静候访问专题:小数近似数的教案
本文来源:http://www.16fd.com/jiaoan/4768.html